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Abstract We devise a three-parameter random search strategy to obtain accurate
estimates of the large-coupling amplitude and exponent of an observable from its
divergent Taylor expansion, known to some desired order. The endeavor exploits the
power of fractional calculus, aided by an auxiliary series and subsequent construction
of Padé approximants. Pilot calculations on the ground-state energy perturbation series
of the octic anharmonic oscillator reveal the spectacular performance.

Keywords Perturbation theory · Divergent series · Fractional calculus ·
Padé approximants · Symanzik scaling

1 Introduction

Fractional calculus (FC) has received considerable attention over the last few decades
[1–3] in a variety of situations. In the context of phase transitions involving power series
with a finite radius of convergence, FC can be implemented [4] to obtain improved
estimates of critical indices. We have recently showed [5] how it can be employed
fruitfully in assessing asymptotic indices too from power series with zero radius of
convergence. Here, we put forward a remarkably powerful strategy that exploits the
idea of embedding an auxiliary series in conjunction.

From a Taylor series expansion of an observable F(x),

F(x) =
∑

j

f j x j , x → 0, (1)
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it is often of interest to extract its asymptotic (x → ∞) behavior. Usually, a power-
law form is assumed, much like the one around the critical point. This implies, the
parameters α0 and β0, defined by the equation

F(x) � α0xβ0 , x → ∞, (2)

denote respectively the amplitude and exponent. Collectively, we call them the asymp-
totic indices. The problem of extracting (2) from (1) is quite involved, but possesses a
very general character. For example, Bender and Boettcher [6] had chosen a number of
examples, with β0 = 0 in (2), to explore how difficult it is to estimate α0 from variants
of (1), with known { f j } up to a certain number of terms.

The power-law form (2) is, in cases, intuitively obvious [5], e.g., when F stands
for an observable and x is a tunable physical variable. In a few situations, however,
form (2) represents the leading behavior of an asymptotic expansion whose structure
is derivable from (1). Choice (2) is thus quite reasonable. However, severity of the
problem of getting (2) from (1) intensifies with the divergence of the parent expansion
(1). Here, we choose (1) as a Rayleigh-Schrödinger perturbation expansion for energy
from which form (2) emerges via a scaling argument.

Perturbation series for the anharmonic oscillator Hamiltonian

H(λ) = −d2/dx2 + x2 + λx2M = H0 + λV (3)

is well-known [7–18]. Specifically, the ground-state energy series

E M
0 (λ) =

∞∑

j=0

ε0
0 j (M)λ j (4)

reveals via Symanzik’s scaling argument [15] that

E M
0 (λ) = λ1/(M+1)

∞∑

j=0

ε∞
0 j (M)λ−2 j/(M+1). (5)

Thus, while (4) is equivalent to (1), the leading term in (5) corresponds to (2) with

β0 = λ1/(M+1), α0 = ε∞
00 . (6)

Most widely studied problems involve M = 2, 3 and 4. An increase in M actually
worsens drastically the divergent character of (4). This is evident from the known
[7–18] asymptotic growth of the coefficients in (4) as

lim
j→∞ ε0

0 j (M) ∼ [(M − 1) j]! A j
M (7)

where AM is some M-dependent constant. Thus, with energy as an observable, here
we notice that, if the system Hamiltonian is given by (3), one has ready results for α0
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and β0 in (2) as seen in (6). While here the exponent is known and the only problem
is to determine α0, both of them need to be evaluated for a series like (1) with no
reference to some Hamiltonian origin.

Divergence of expansion (1) is commonly encountered in calculations of F(x) at
some large x-value. The most popular technique is the construction of suitable Padé
approximants (PA) [16,19]. In case of (4), however, straightforward performance of
PA is poor, except for very small λ and M < 4 [17,18]. In fact, a few effective variants
of the PA in estimating values of F(x) at large x have recently been put forward [20]
where major references to earlier works may be found. We also tried to get reasonable
estimates of β0 [21] and α0 [22] by using specific variants of the PA. A different sort of
approach to obtain F(x) at large x is to employ multi-valued algebraic approximants
[23–25] that are constructed in the same spirit as the PA. On the other hand, quite a few
very successful methods of deriving strong-coupling expansions from weak-coupling
ones for (3) have also come up from time to time (see, e.g., [26,27] and refs. therein).
However, they commonly rely on the large- j behavior of f j [e.g., (7)], along with
the scaling relation (5). All such studies make it clear that the case M = 4 is the most
notorious.

In short, thus, the venture of extracting (2) from (1) becomes most challenging for
the octic anharmonic oscillator (OAO) problem. To proceed, therefore, we view (4)
as a purely numerical series, with no reference to any Hamiltonian origin, so that one
can disregard the scaling in (5) or the known β0 in (6). Only, in calculating α0, we
employ the known β0 value because the plan is to check the efficacy of the endeavor,
and, it is evident, a rougher input β0 would only worsen the target value sought. To
achieve our end, we take (1), couple it to a two-parameter auxiliary series, import FC
and adopt an appropriate PA strategy. The overall endeavor is finally cast in the form
of a three-parameter random search problem. For computational purposes, we employ
the coefficients ε0

0 j (M = 4) in (4) up to j = 50 [28].

2 The strategy

Let us start with an auxiliary series A(x) that admits of both the forms (1) and (2).
Simplest is to take

A(x) = (1 + px)q , (8)

with two variable parametersp and q. We then use (1) to construct

H(x) = F(x)/A(x). (9)

The asymptotic parameters of H(x) will be

α0(H) = α0(F)/pq , β0(H) = β0(F) − q. (10)

Likewise, the same parameters for H ′(x) = d H(x)/dxwill turn out to be

α0(H ′) = α0(H)β0(H), β0(H ′) = β0(H) − 1. (11)
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We first delineate the plan of estimating β0(F). This requires elimination of α0(F).
So, we define a new series as

B(x) = x H ′(x)/H(x). (12)

It satisfies

lim
x→∞ B(x) = β0(F) − q. (13)

Therefore, sequences of diagonal PA to B(x) can be evaluated in the x → ∞ limit.
These sequences are of the form

SN
1 = ([N/N ]B(x))x=∞. (14)

The limit point of such a sequence should converge to β0(F) – q. To improve the
convergence of {SN

1 }, we exploit FC in the following way. The Riemann–Liouville
convention [1–3] allows us to define a fractional order (g) differential as

Dg yn = �(n + 1)

�(n + 1 − g)
yn−g. (15)

Prescription (15) may be used to construct a function B1(x) where

B1(x) = xg Dg B(x). (16)

If B(x) has the form

B(x) =
∑

j

b j x j , (17)

then B1(x) will look as

B1(x) =
∑

j

b j
�( j + 1)

�( j + 1 − g)
x j , x → 0. (18)

On the other hand, we also have from (16)

lim
x→∞ B1(x) = �(1)

�(1 − g)
(β0(F) − q) . (19)

This implies, the PA sequences

SN
2 = ([N/N ]B1(x))x=∞ (20)

may be estimated using (18) and employed for the left part of (19) to yield a sequence
of approximants for the true β0(F):
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βN
0 (F) = �(1 − g)SN

2 + q. (21)

Result (21), however, depends critically on the chosen p, q and g that have been
employed in (8) and (18). Thus, we require a final three-parameter optimization step
only, to which we shall return in due course.

Let us outline now the procedure for the evaluation of α0(F). Here, we assume that
β0(F) is somehow known a priori. We indeed choose

q = β0(F). (22)

As a result, the asymptotic parameters of H(x) become

α0(H) = α0(F)/pβ0(F), β0(H) = 0. (23)

Therefore, sequences of the form

SN
3 = ([N/N ]H(x))x=∞ (24)

should hopefully converge to α0(F)/pq , with q given by (22). Importing FC, an added
flexibility through fractional order differential g, defined in (15), can be instilled in
the same way as has been done in going from B(x) to B1(x). We define H1(x) as

H1(x) = xg Dg H(x). (25)

and construct the PA sequences

SN
4 = ([N/N ]H1(x))x=∞ (26)

to obtain a sequence of gradually improved estimates for the amplitude α0(F):

αN
0 (F) = �(1 − g)SN

4 pβ0(F). (27)

Note that here a two-parameter optimization step is involved.
Finally, we define an appropriate error and proceed to minimize it with respect to

the parameters p, q and g. This forms the optimization strategy. In case of α0(F), q
is assumed known [see (22)], but can be replaced by the already evaluated βN

0 (F) via
(21) at each step of estimation of αN

0 (F) in (27). In either approach, therefore, the
amplitude evaluation is a two-parameter problem. Now, if we employ either (21) or
(27) and use the coefficients up to j = K in (1), the maximum number of diagonal PA
that we can construct is [L/L] where L = K /2. Thus, N starts from 1 and continues
up to L . Therefore, we find it convenient to measure the error � by

�δ = 1

L − 1

L−1∑

N=1

(
δN

0

δL
0

− 1

)2

(28)
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where δ stands for either β or α. This error desirably reveals that, for a faster converging
sequence, it would reduce more in magnitude.

3 Results and discussion

The computational scheme proceeds as follows. We choose a specific property, e.g., β
or α. In the former case, we fix the three parameters (p, q and g) and K , the maximum
number of coefficients in (1) to be used, to obtain the sequence of values via (21)
and estimate the error �β in (28). Similarly, the error �αis estimated at fixed p, g
and K , only keeping q constant at (22). Then, via a random search strategy, we try to
minimize �δ . For sufficiently small errors, it has, however, been observed that very
small changes in p, q and g (or, p and g only, for α) may lead to comparable errors.
So, we have fixed a sufficiently small error-level and take about 5,000 different values
of the variables, and their corresponding errors that are less than the pre-assigned �.
The average estimate for each of the parameters is then computed, along with the error.

Table 1 shows sample data for the exponent. The last entry is actually again an
average estimate for βL

0 (F) in (21) with the corresponding last PA (L = K /2) over
all the values within the error-level under consideration. We note a smooth passage of
βL

0 (F) towards exactness (1/5) with increasing L .
In Table 2, we display the behavior of three specific sequences at their respective

average values of p, q and g. It brings to light how good is the convergence of (21) and
how results gradually improve with increasing input information. It also exhibits the
rapidity with which values of the sequences of approximations settle as K is increased.
At K = 30, the value remains constant over the region of N = 8 to N = 15 while the
same constancy at a better value is found over N = 4 to N = 25 when K is raised to
50.

Similar feat is experienced in case of studying scheme (27) for the amplitude.
Results are presented in Table 3. The last entry again furnishes the average αL

0 (F)

in (27) where L = K /2 and generated sequences lie within the error-level under
consideration. We note happily that these values of αL

0 (F) approach gradually the true
estimate (1.22582) [7–14] as L grows.

In Table 4, the behavior of three different sequences of αN
0 (F)at their respective

average values of p and g are shown. We note again both the rapidity of conver-
gence of (27) and improvement in the estimates with increasing K . The sequences of
approximations settle more quickly at higher K . However, now the range over which

Table 1 A comparative survey
of the estimates for β0(F) in the
OAO case at varying K

The error �β refers to (28).
Average values of the parameters
and the error are displayed

K p q g �β βL
0 (F)

10 28.55490 0.19675 7.08512 9.53E−13 0.196941

20 28.23490 0.19725 8.22487 3.59E−12 0.197464

30 28.07506 0.19785 8.96494 1.16E−11 0.198073

40 27.90488 0.19904 9.88560 5.88E−11 0.199273

50 27.74501 0.19975 9.86507 8.30E−11 0.199979
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Table 2 Behavior of βN
0 (F) in

(21) for the OAO case at three
different K -values

N K = 10 K = 30 K = 50

1 0.1969370 0.1980724 0.1999810

2 0.1969372 0.1980726 0.1999812

3 0.1969375 0.1980738 0.1999829

4 0.1969372 0.1980744 0.1999812

5 0.1969372 0.1980738 0.1999812

6 0.1980744 0.1999812

7 0.1980729 0.1999812

8 0.1980744 0.1999812

9 0.1980744 0.1999812

10 0.1980744 0.1999812

15 0.1980744 0.1999812

25 0.1999812

Table 3 A comparative survey
of the estimates for α0(F) in the
OAO case at varying K

The error �α refers to (28).
Average values of the parameters
and the error are displayed

K p g �α αL
0 (F)

10 2.97497 1.73091 8.07E−8 1.23528

20 2.96850 1.68849 1.77E−7 1.23222

30 2.96501 1.66513 2.14E−7 1.23035

40 2.96050 1.65051 2.25E−7 1.22888

50 2.93490 1.64599 2.29E−7 1.22630

Table 4 Behavior of αN
0 (F) in

(27) for the OAO case at three
different K -values

N K = 10 K = 30 K = 50

1 1.2359381 1.2322716 1.2288046

2 1.2354543 1.2309072 1.2271180

3 1.2354504 1.2306526 1.2267297

4 1.2354094 1.2306091 1.2266294

5 1.2353001 1.2306063 1.2266061

6 1.2306091 1.2266294

7 1.2306092 1.2266338

8 1.2306091 1.2266294

9 1.2306108 1.2266294

10 1.2306091 1.2266294

15 1.2306091 1.2266294

25 1.2266294

constancy is exhibited has been reduced compared with the same in the exponent
case, for a fixed K . This only implies, computed amplitudes are somewhat inferior in
quality.
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Table 5 A comparative survey
of the estimates of asymptotic
parameters for the OAO case by
different methods (see text) at
varying K

Property Exact value Method K

10 30 50

Exponent (β) 1/5 I 0.035 0.042 0.044

II 0.125 0.135 0.138

III 0.197 0.198 0.200

Amplitude (α) 1.226 I 1.865 1.822 1.816

II 0.785 0.857 0.877

III 1.235 1.230 1.226

We finally highlight the advantages of the FC-based strategies. Table 5 shows the
chief gains in brief. All displayed data are rounded off at the 3rd decimal place.
Here, method I refers to the parent scheme and method II the bare FC-assisted one
[5]. Notably, the latter involves a one-parameter variation, the order of fractional
differentiation. Comparing such results with those of method III, the three-parameter
variational route proposed in this work, we see that the gains are indeed dramatic. Use
of just 10 perturbation coefficients in method III leads us to quite reliable data, far
superior to what one can have by taking K = 50 and adopting either of the first two
methods.

4 Concluding remarks

To summarize, we have found a very efficient strategy for the calculations of asymptotic
indices via FC by introducing the idea of an auxiliary series. The gain is spectacular
for the OAO problem, if we remember the earlier estimates [5]. While method II
has been found to perform exceptionally well compared to method I, here we find
that the percentage error reduces by more than an order of magnitude at a given K
in going from method II to method III. Most strikingly, method III offers decisively
better results just at K = 10 than those obtained via method II at K as large as 50.
Such dramatic improvements could not be appreciated for M < 4 cases, and this is
precisely why we have considered here the OAO problem.
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